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Lecture 8

Approximation methods

1. Time-Independent Perturbation Theory
2. Variation method
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Time Independent Perturbation Theory

Introduction

One often finds in QM that the Hamiltonian for a particular problem

can be written as:

( 0 ) ( 1 )H H H 

2 2
2 3 4

2

1

2 2

d
H kx x x

dx
 


     

H(0)

Exactly Solvable

H(1)

Correction Term

( 0 ) ( 1 ) ( 0 )*E H d     is the first order perturbation theory

correction to the energy.
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Brief Introduction to Second Order Perturbation Theory

As noted above, one also can obtain additional corrections to the energy

using higher orders of Perturbation Theory;  i.e.

The second order correction to the energy of the nth level is given by:

( 0 ) ( 1 ) ( 2 )

n n n nE E E E   

En
(0) is the energy of the nth level for the unperturbed Hamiltonian

En
(1) is the first order correction to the energy, which we have called  E

En
(2) is the second order correction to the energy, etc.

2
( 0 ) (1) ( 0 )

( 2 )

( 0 ) ( 0 )
1

k n

n

k n k

H
E for k n

E E

 



 




( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 1 ) ( 0 )*k n k nH H d     where



Slide 4

If the correction is to the ground state (for which we’ll assume n=1), then:

2
( 0 ) (1) ( 0 )

1( 2 )

1 ( 0 ) ( 0 )
2 1

k

k k

H
E

E E

 








2 2 2
( 0 ) (1) ( 0 ) ( 0 ) (1) ( 0 ) ( 0 ) (1) ( 0 )

2 1 3 1 4 1( 2 )

1 ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )

1 2 1 3 1 4

H H H
E

E E E E E E

     
   

  

Note that the second order Perturbation Theory correction is actually

an infinite sum of terms.

However, the successive terms contribute less and less to the overall

correction as the energy, Ek
(0), increases.



Slide 5

The Variational Method

Theory: 

For a system whose Hamiltonian  operator H is time independent and 

whose lowest Energy Eigen value is E, if  is any normalized well behaved 

Function of the coordinates of the system particle that satisfy the 

Boundary condition of the problem then

0

0

*  is normalized wavefunction

if the function  is not normalized then

*

*

 is called trial function

* called Variation Integral =W

H d E

H d
E

d

H d

   



  

  



  












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The Variational Method

Procedure:  

We try many trial function and the one give the Lower value of 

variational integral, the better Approximation we have for E1

In practice:  

I. We put several parameters into the trial function 

II. Then we vary the parameters so as to mininmize the 

variational integral W  

III. The lowest one is the best 0
W

c






trial

H
E E

 

 
  

0

*

*

H d
E

d

  

  
 




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Linear  Variation Functions

GO Back to Matrix, you need it

A special kind of variation function widely used in the study of molecules 

is the linear variation function. 

A linear variation function is a linear combination of n linearly 

independent functions f1, f2,c, fn: 

So    c1f1+ c2f2 + c3f3        ......  cnfn
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1

j

*

  trial function is real.      c  Parameters to be determined

                                f   called Basis set ( they must stasfy the boundary condition)

so the Variation function 

n

j j j

j

c f

t

 

 










1 1 1 1

*

1 1

*

*

overlap

t

assume 

 variational in egral 

integral

n n n n

j j k k j k j k

j k j k

jk j k

n n

j k

j

jk

k

c f c f c c f f t

S f f t called

t c c

H t
the

S

W
t

 

 

 

   

 

  

 

 






    



 





A linear variation function is a linear combination of n linearly 

independent functions f1, f2,c, fn: 

So   c1f1+ c2f2 + c3f3        ......  cnfn f
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1

j

*

  trial function is real.      c  Parameters to be determined

                                f   called Basis set ( they must stasfy the boundary condition)

so the Variation function 

n

j j j

j

c f

t

 

 










1 1 1 1

*

*

*

1 1 1 1

*

1 1

 variational integral        the numenator

assume 

 

n n n n

j j k k j k j k

j k j k

n n n n

j j k k j k j k

j k j k

j k

n n

j k k

j k

jk

j

c f c f c c f f t

H t
the W for

t

H t c f H c f c c f Hf t

f Hf t

t c

H

c H

 

 

 

 

   

   

 

  






   

 

 

    





     



 
*

1 1

*

1 1

*

1 1

            

                       

n n

j k

j k

n n

j k

j k

n n

j k

jk

jk

k

jk

j

S

S

t c c

c c
H t

W
t

c

H

c

 

 

 

 

 

 

 


 



 

 


  



So lets evaluate it……..
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 

*

1 1

*
1 1 1 1

1

1

1

1

 

 

we can minimize Win a way to approach a position of E .

The a

    

variation l integral

   and s

t

o

 W is afu

 

nc ion

jk

n n

j k n n n n
j k

j k j kn

k

jk

jn
j k j k

j k

j k

k

j

c c
H t

W W c c c c
t

S

W E

Sc c

H

H
 

 

 

   

 


  





 


   
  

 

2

1

1 3

p

o

o

f of t

s

he  in

o

dependent varia

m

ble

W=W(c

a l

, , ...

n

 ro f i  n t

.

 i port nt ets

... )

minimize W

 go to the results

0 1,2,3,4,5.......,

 mean 0

n

n

ik ik k

i

k

the

H S W

c

c i n

c c

W

c

















It is a set of simultaneous Linear homogeneous 

equations in the unknown c1, c2,c3,…cnfn

1 1 2 2 3 3 4 4

1

...............
n

n n j j

j

c f c f c f c f c f c f


       



The solution of the equation is: 
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 

       

       

     

11 11 1 12 12 2 13 13 1 1 1

21 21 1 22 22 2 23 23 1 2 2

31 31 1 32 32 2 33 33 1

1

............... 0

............... 0

........

0 1,2,3,4,5.......,

n n n

n

n

ik i

n n

k k

k

H

H S W c H S W c H S W c H S W c

H S W

n

c H S W c H S W c H S W c

H S W c H

S W c i

S W c H S W c



        

        

     

  

 

       

3 3

11 11 1 12 12 2 13 13 1 1 1

11 11 12 22 1 1

1 1 2

1

2

.

0

...... 0

.

.

............... 0

n n n

n n n

n n

n n n n nn nn n

H S W c

H S W c H S W c H S W c H S W c

H S W H S W H S W

H S W H S cW H S W

c

  

        

  
  

 



 
  
 

 

  

111 11 12 12

21 21 22 22 2

Matrix used to solve it ......... 2

0 det( ) 0ij ij

for n

cH S W H S W
H S W

H S W H S W c



    
    

   



Example: 

Add a functions to the function x(l-x) to form a 

linear variation function for a particle in 1-D  box of 

length l .Find the approximate energies and wave 

function of the lowest four states?

Answer:
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4

1 1

1

2 2

2 2

       n = 4 so           

( )                            

 ( )    is well behaved and obeys boundary conditions at 0   

n

j j j j

j j

c f c f

f x l x

f x l x f x and x l

 
 

 

 

   

 

There are an infinite number of possible well-behaved functions that could be 

used for f2, f3, and f4. The function f2 obeys the boundary conditions of vanishing 

at x = 0 and x = l.

we shall add in two functions that are odd. An odd function must vanish at the 

origin and vanish at the box midpoint x = ½ l, as well as at x = 0 and l. A simple

function with these properties is f3 and f4



We got f3 and f4 by multiply f2 and f3 by (1/2 l – x)
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4

1

2 2

2

3

2

3

2 2

4

1 3

4

( )                             

 ( )   

1
( )                             

2

1
 ( )

2

since a e

1
(

n

)
2

nd are ev an nd 

)

a d

1
(
2

f multiply by l x to get f

multi

x l x

f x l x x

f x

t

l

g

x

e

l

l

f

x

f x x l x

f f

ply by l o t f

f

 

 

 
   

 

 
 








 

13 31 14 41 23 32 24

13 1

42

31 4 41 23 32 24 42

= S = 0 = S = 0

 

  = S = 0 = S = 0

= H = 0 = H = 0  = H = 0 =

a

= 0

 

H

nd

 

are odd so

H H

S S S S

H H



The secular equation become:
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11 11 12 12 13 13 14 14

21 21 22 22 23 23 24 24

31 31 32 32 33 33 34 34

41 41 42 42 43 43 44 44 13 31 14 41

2

13 31 14 41

23 32 24 42

= S = 0 = S = 0

=

s

S = 0 = S = 0

a

 

=

e

H = 0 = H =

inc  

0

nd

  

 
 

H S W H S W H S W H S W

H S W H S W H S W H S W

H S W H S W H S W H S W

H S W H S W H S W H S W H H

S S

S S

H

   

   

   

   

4

3 32 24 42

11 11 12 12

21 21 22 22

33 33 34 34

43 43 44 44

11 11 12 12

21

3

21

33 3 3

22 22

1

2

4 3

H

  

 =0 so

0      

= = 0 = H = 0 

0 0

0 0

0

 

0

 

 

 

0

      

 

0

H

c

H S W H S W

H S W H S W

H S W H S W

H S W H S W

H S W H S W

so

H

H S

H

W

S W

cH S

S

W



 

 
 




 

 

 




 
 
 

 
 
 

  
   

 





 

  

       

       

3

43 43 44 44 4

2 33 33 3 34 34 3

4

11

2 43 4

11 1 12 1 2

21 1 43 4 42 42 42 1 2 2

0

0

0

0                     

0                      

W c

H S W H S W c

W H S W c HH S W c H S c

H S W c H

S W c

Hc S W c H S W cS W

   
   

  





   

  



    





Evaluate H11    S11….etc
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   

   

2 2 2 3

11 1 1 2

0

5

11 1 1

0

2 5 7 2 7 9

12 21 12 21 22 22

2 5 7 2 9 11

33 33 44 44

2 7

34 43 43

2 6

30

30 140 105 630

40 840 1260 27720

280

l

l

l
H f H f x l x x l x x

m x m

l
S f f x l x x l x x

l l l l
H H S S H S

m m

l l l l
H S H S

m m

l
H H S

m

 
           

       

     

   

 





9

34
5040

l
S 

So



Energy states 
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 

 

2 22

3 42 2 2

2 22

2 3 5 2 5 7

2 5 7 2

2 2 2

7 9
0

0.1250018
28 532  and from c  and c  ma

6 30

3

30 140

30 1

trix
1.293495

0.500293

40 105 63

60 1620
2.539 5

0

42

so

h

l l l l
W W

m m

l l l l
W W

W

ml
W

ml h ml

h

m

ml

ml h m

m

l

 
 
  
 
 
 

  
       

   

 
  






 





 2 2

 0.125        ,    0.5         ,   1.125        and   2    

for the four lewst stated in exact solution of PIB 

so the :

0.1250018 , 0.500293, 1.293495 2.5393425

   

ml h W values are

and are compared to

 
  
 



Wave functions
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       11 11 1 12 12 2 21 21 1 22 22 2

2

1 2

2

1 2

2 2

0                     0 

0.023095 0.02038 0   ............(1)                  

0.061144 0.053960 0 .........

0.1250018S

g

H S W

l

ubstitu

c

ti

c H S W c H S W c H S

on of W h ml

c

in

i

c

e

c

l

v

W

c

       

 

  



   

   

2

1 1 2

2 2

2 2

1 1 1 1 2 2 1 1 2 2

2 2

1 1

5 2

1

.........(2)

assume c =k so for eqn 1  0.023095 0.02038 0   will

0.023095 0.02038 =1.132k  

to find k < / >=1  and so    < c / c

+1.132 / +1.132 =1

4.404  

=

c c l be

k c l c l

f c f f c f

kf k l kf k l

k l

 



 

 

  

 



         

5 2 9 2

1 1 2 2 1 1

221 2

1

c 4.404 4.990

4.404 1 4.990 1  

using  W2,W3 and W4 we will get the follwing normailzed function in which X=    

f c f f l f l

l x l x l x l x l

x

l

 

  

    
 



The four wavefunctions
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   

    

    

   

21 2 2

1

21 2 2

2

21 2 2

3

21 2 2

4

4.404 1 4.990 1  

1 1
16.78 1 1 71.85 1

2 2

28.65 1 1 132.7 1

1 1
98.99 1 572.3 1

2 2

x
X

X

l

l X X X X

l X X X X X X X

l X X X X

l X X X X X X

















    
 

    
          

    

     
 

    
         

  



 



Application 

1. Time-Independent Perturbation Theory 

2. Variation method
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The Helium Atom Schrödinger Equation

+Ze

-e -e

He:  Z=2

r1 r2

r12
The Hamiltonian

2 2 2 2 2

1 1 2 2

0 1 0 2 0 12

( ) ( )

2 2 4 4 4

p r p r Ze Ze e
H

m m r r r  
    

^ ^

KE(1) KE(2) PE(1) PE(2) PE(12)

2 2 2 2 2
2 2

1 1 2 2

0 1 0 2 0 12

( ) ( )
2 2 4 4 4

Ze Ze e
H r r

m m r r r  
       

04 1m e    Atomic Units:

2
2 2

1 1 1 12 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1
( ) sin

sin sin
r r

r r r r r


    

       
      

       

2
2 2

2 2 2 22 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 1 1
( ) sin

sin sin
r r

r r r r r


    

       
      

       

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r
       
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2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r
       

The Schrödinger Equation

1 2 1 2( , ) ( , )H r r E r r  

 depends upon the

coordinates of both electrons

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r

   
           

   

1 1 2 2

12

1
( ) ( )H H r H r

r
   Can we separate variables?

1 2 1 1 2 2( , ) ( ) ( )r r r r    ??

Nope!!  The last term in the 

Hamiltonian messes us up.

Electron

Repulsion
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The Experimental Electronic Energy of He

IE1 = 24.59 eV

IE2 = 54.42 eV

0

He

He+ + e-

He2+ + 2e-

E
n

e
rg

y

EHe = -[ IE1 + IE2 ]

EHe = -[ 24.59 eV + 54.42 eV ]

EHe = -79.01 eV

or EHe = -2.9037 au (hartrees)

Reference State

By definition, the QM reference

state (for which E=0) for atoms

and molecules is when all nuclei

and electrons are at infinite

separation.
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The Independent Particle Model

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r

   
           

   

If the 1/r12 term is causing all the problems, just throw it out.

2 2

1 1 2 2 1 1 2 2

1 2

1 1
( ) ( ) ( ) ( )

2 2

Z Z
H r r H r H r

r r

   
            

   

Separation of Variables:  Assume that 1 2 1 1 2 2( , ) ( ) ( )r r r r   

 1 1 2 2 1 1 2 2 1 2 2( ) ( ) ( ) ( ) ( ) ( )H r H r r r E r r      

2 2 1 1 1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r H r r r H r r E r r       

1 1 1 1 2 2 2 2

1 1 2 2

1 1
( ) ( ) ( ) ( )

( ) ( )
H r r H r r E

r r
 

 
 

=

E1

=

E2
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1 1 1 1 1 1 1( ) ( ) ( )H r r E r  2 2 2 2 2 2 2( ) ( ) ( )H r r E r and

2

1 1 1 1 1 1 1

1

1
( ) ( ) ( )

2

Z
r r E r

r
 

 
    

 

2

2 2 2 2 2 2 2

2

1
( ) ( ) ( )

2

Z
r r E r

r
 

 
    

 

Hey!!! These are just the one electron Schrödinger Equations for

“hydrogenlike” atoms.  For Z=2, we have He+.

We already solved this problem in Chapter 6.

Wavefunctions

1 1 1

1 1 1 11 1 1 1 1( ) ( ) ( , )n l m

n l l mr A R r Y     2 2 2

2 2 2 22 2 2 2 2( ) ( ) ( , )n l m

n l l mr A R r Y    

Ground State Wavefunctions

(1s:  n=1,l=0,m=0)

1100

1 1( )
Z r

r A e 
  2100

2 2( )
Z r

r A e 
 

Remember that in atomic units, a0 = 1 bohr
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Energies

2

1 2

12

Z
E

n
 

2

2 2

22

Z
E

n
 

2 2

1 2 2 2

1 22 2

Z Z
E E E

n n
    

Ground State Energy

(n1 = n2 = 1)

2 2

1 2
2 2

Z Z
E E E    

2Z  4 . . ( )a u h a r tre e s 

Z = 2 for He

exp 2 .9037 . . ( )E a u hartrees 

Our calculated Ground State Energy is 38% lower than experiment.

This is because, by throwing out the 1/rl2 term in the Hamiltonian,

we ignored the electron-electron repulsive energy, which is positive.
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Perturbation Theory Treatment of Helium

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

   
           

   

Z Z
H r r

r r r

The Helium Hamiltonian can be rewritten as:

(1)

12

1
H

r
 

( 0 ) (1 )H H H 

where (0) 2 2

1 1 2 2

1 2

1 1
( ) ( )

2 2

   
          

   

Z Z
H r r

r r

H(0) is exactly solvable, as we just showed in the independent

particle method.

H(1) is a small perturbation to the exactly solvable Hamiltonian.

The energy due to H(1) can be estimated by First Order

Perturbation Theory.
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( 0 ) ( 0 ) ( 0 ) ( 0 )H E 

The “Zeroth Order” Ground State energy is:

2 2

1 2
2 2

Z Z
E E E    

2 . . 4.00 . .   Z a u a u

The “Zeroth Order” wavefunction is the product of He+

1s wavefunctions for electrons 1 and 2

( 0 ) 100 100

1 1 2 2( ) ( )r r    1 2

1/2 1/2
3 3

Zr ZrZ Z
e e

 

 
      

       
         

1 2 1 2

3
( ) ( )(0 ) Z r r Z r rZ

e Ae


    

Zeroth Order Energy and Wavefunction



Slide 28

First Order Perturbation Theory Correction to the Energy

we learned that the correction to the energy, 

E  [or E(1)] is:

(1) ( 0 ) (1) ( 0 )*E E H d     

(1)

12

1
H

r
  1 2 1 2

3
( ) ( )(0 ) Z r r Z r rZ

e Ae


    andFor the He atom:

1 22 22

1 2

12

1Zr Zr
E A dr dr e e

r

 
   Therefore:

5

8
E Z 

2

1 1 1 1 1 1

2

2 2 2 2 2 2

sin( )

sin( )

dr r dr d d

dr r dr d d

  

  





where

The evaluation of this integral is rather difficult, and in outlined

in several texts.
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Therefore, using First Order Perturbation Theory, the total electronic

energy of the Helium atom is:

2 2
(0) 5

2 2 8

Z Z
E E E Z      

2 5
2 2 2.75 . .

8
a u     

This result is 5.3% above (less negative) the experimental

energy of -2.9037 a.u.

However, remember that we made only the First Order Perturbation

Theory correction to the energy.

Order       Energy      % Error

0             -4.0  a. u.    -38%

1             -2.75            +5

2             -2.91          -0.2

13            -2.9037       ~0



Slide 30

Variational Method Treatment of Helium

Recall that we proved earlier in this Chapter that, if one has an

approximate “trial” wavefunction, , then the expectation value

for the energy must be either higher than or equal to the true ground

state energy.  It cannot be lower!!

trial

H
E E

 

 
  

0

*

*

H d
E

d

  

  
 





This provides us with a very simple “recipe” for improving the energy.

The lower the better!!

When we calculated the He atom energy using the “Independent

Particle Method”, we obtained an energy (-4.0 au) which was lower

than experiment (-2.9037 au).

Isn’t this a violation of the Variational Theorem??

No, because we did not use the complete Hamiltonian in our

calculation.
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A Trial Wavefunction for Helium

Recall that when we assumed an Independent Particle model for Helium,

we obtained a wavefunction which is the product of two 1s He+ functions.

100 100

1 1 2 2( ) ( )r r    1 2 1 2

1/ 2 1/ 2
3 3

( )Zr Zr Z r rZ Z
e e e

 

      
    

   

For a trial wavefunction on which to apply the Variational Method,

we can use an “effective” atomic number, Z’, rather than Z=2.

By using methods similar to those above (Independent Particle Model

+ First Order Perturbation Theory Integral), it can be shown that

2 2

1 2

1 2 12

1 1 1

2 2

Z Z
H

r r r
       for Z = 2 for He

and 1 2

1/2
3

'( )' Z r rZ
e



  
  

 
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trial

H
E

 

 


2 2' ' 5
' ' '

2 2 8

Z Z
ZZ ZZ Z    

KE(1) KE(2) PE(1) PE(2) PE(12)

2 5
' 2 ' '

8
trialE Z ZZ Z   2 27

' '
8

Z Z 2 5
' 4 ' '

8
Z Z Z  

He:  Z = 2

vals.1

v
a

ls
.2

Z E( )

Etrial

Z’

We want to find the value of Z’

which minimizes the energy, Etrial.

Once again, we can either use

trial-and-error (Yecch!!) or basic

Calculus.



Slide 33

Etrial

Z’
vals.1

v
a

ls
.2

Z E( )

2 27
' '

8
trialE Z Z 

At minimum:
27

0 2 '
' 8

trialdE
Z

dZ
  

27
' 1.6875

16
Z  For lowest Etrial:

2
27 27 27

16 8 16
trialE

 
   

 

2.848tria lE au  (1.9% higher than experiment)

exp 2 .9037tE au vs.

The lower value for the “effective” atomic number (Z’=1.69 vs. Z=2)

reflects “screening” due to the mutual repulsion of the electrons.
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A Two Parameter Wavefunction

One can improve (i.e. lower the energy) by employing improved

wavefunctions with additional variational parameters.

Better Variational Wavefunctions

Let the two electrons have different values of Zeff:

1 2 1 2' '' '' 'Z r Z r Z r Z r
A e e e e       

(we must keep treatment of the

two electrons symmetrical)

If one computes Etrial as a function of Z’ and Z’’ and then finds

the values of the two parameters that minimize the energy,

one finds:

Z’ = 1.19

Z’’ = 2.18

Etrial = -2.876 au (1.0% higher than experiment)

The very different values of Z’ and Z’’ reflects correlation between

the positions of the two electrons; i.e. if one electron is close to the 

nucleus, the other prefers to be far away.
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Another Wavefunction Incorporating Electron Correlation

 1 2'( )

121
Z r r

A e b r      

The second term, 1+br12, accounts for electron correlation.

Z’ = 1.19

b = 0.364

Etrial = -2.892 au (0.4% higher than experiment)

When Etrial is evaluated as a function of Z’ and b, and the values of

the two parameters are varied to minimize the energy, the results are:

It increases the probability (higher 2) of finding the two electrons

further apart (higher r12).
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A Three Parameter Wavefunction

Z’ = 1.435

Z’’ = 2.209

b = 0.292

Etrial = -2.9014 au (0.08% higher than experiment)

When Etrial is evaluated as a function of Z’, Z’’ and b, and the values of

the 3 parameters are varied to minimize the energy, the results are:

   1 2 1 2' '' '' '

121
Z r Z r Z r Z r

A e e e e b r         
 

We have incorporated both ways of including electron correlation.



Even More Parameters

When we used a wavefunction of the form:  1 2'( )

121
Z r r

A e b r      

The variational energy was within 0.4% of experiment.

We can improve upon this significantly by generalizing  to:

 1 2'( )

1 2 121 ( , ,
Z r r

A e g r r r     

g(r1,r2,r12) is a polynomial function of the 3 interparticle distances.

(0.003% higher than experiment)

Hylleras (1929) used a 9 term polynomial (10 total parameters) to

get:  Etrial = -2.9036 au

(~0% Error)

Kinoshita (1957) used a 38 term polynomial (39 total parameters) to

get:  Etrial = -2.9037 au

To my knowledge, the record to date was a 1078 parameter

wavefunction [Pekeris (1959)]
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Wavefunction       Energy      % Error

A Summary of Results

Eexpt. = -2.9037 au

1 2( )Z r r
A e

  -2.75  au      +5.3%

1 2'( )Z r r
A e

  -2.848          +1.9%

1 2 1 2' '' '' 'Z r Z r Z r Z r
A e e e e

      -2.876          +1.0%

 1 2'( )

121
Z r r

A e b r
     -2.892          +0.4%

   1 2 1 2' '' '' '

121
Z r Z r Z r Z r

A e e e e b r
       

  -2.9014        +0.08%

 1 2'( )

1 2 121 ( , ,
Z r r

A e g r r r     
(39 parameters)

-2.9037         ~0%

Notes: 1.  The computed energy is always higher than experiment.

2.  One can compute an “approximate” energy to whatever

degree of accuracy desired.
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Application to Multi electron Atoms
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The Hamiltonian for Multielectron Atoms

Atomic Units: 2 2

1 1 2 2

1 2 12

1 1 2 2 1
( ) ( )

2 2
H r r

r r r
       

Helium

2 2 2 2 2
2 2

1 1 2 2

0 1 0 2 0 12

2 2
( ) ( )

2 2 4 4 4

e e e
H r r

m m r r r  
        Z = 2SI Units:

Multielectron Atoms

1
2

1 1 1

1 1

2

N N N

i

i i i j ii ij

Z
H

r r



   

      

Elect

KE

Elect-

Nuc

PE

Elect-

Elect

PE

1

1 12 13 23 24 34 35

1 1 1 1 1 1 1N

i j i ijr r r r r r r



 

        
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Atomic Orbitals

In performing quantum mechanical calculations on multielectron

atoms, it is usually assumed that each electron is in an atomic orbital, ,

which can be described as a Linear Combination of Hydrogen-like

orbitals, which are called Slater Type Orbitals (STOs).

Thus:  i ic  
The goal of quantum mechanical calculations is to find the values

of the ci which minimize the energy (via the Variational Principle).

These STOs are also used to characterize the Molecular Orbitals

occupied by electrons in molecules.

These STOs are usually denoted as i
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The Hartree Method:  Helium

Hartree first developed the theory, but did not consider that

electron wavefunctions must be antisymmetric with respect to

exchange.

Fock then extended the theory to include antisymmetric wavefunctions.

Lets proceed as follows:

1.  Outline Hartree method as applied to Helium

2.  Show the results for atoms with >2 electrons

3.  Discuss antisymmetric wavefunctions for multielectron atoms

(Slater determinants)

4.  Show how the Hartree equations are modified to get the

the “Hartree-Fock” equations.
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Basic Assumption

Each electron is in an orbital, i (e.g. a sum of STOs).

The total “variational” wavefunction is the product of one electron

wavefunctions:
1 2 1 1 2 2( , ) ( ) ( )r r r r   

Procedure

Let’s first look at electron #1.  Assume that its interaction with the

second electron (or with electrons #2, #3, #4, ... in multielectron atoms)

is with the average “smeared” out electron density of the second

electron.

2

2 2

1 1 2

0 12

( )
( )

4

init

eff
e r

V r e dr
r




  

SI Units

or

2

2 2

1 1 2

12

( )
( )

init

eff
r

V r dr
r


 

Atomic Units

2 2

12

1
(2) (2)init init

r
 

“Guess” initial values the individual atomic orbitals:

(This would be an initial set of coefficients in the

linear combination of STOs).  i.e.   

1 1 2 2( ) and ( )init initr r 

1 1 1 2 2 3 3 ...i ic c c c        
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It can be shown (using the Variational Principle and a significant

amount of algebra) that the “effective” Schrödinger equation for

electron #1 is:

2

1 1 1 1 1 1 1

1

1 2
where

2

eff eff effH H V
r

       

elect

KE

elect-

Nuc

PE

“Effective”

elect-elect

PE

This equation can be solved exactly to get a new estimate

for the function, 1
new (e.g. a new set of coefficients of the

STOs).

There is an analogous equation for 2:

2

2 2 2 2 2 2 2

2

1 2
where

2

eff eff effH H V
r

       

This equation can be solved exactly to get a new estimate

for the function, 2
new (e.g. a new set of coefficients of the

STOs).

1 2 2

12

1
(2) (2)eff init initV

r
 

2 1 1

12

1
(1) (1)eff init initV

r
 
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What can we do to fix the problem that the orbitals resulting from

solving the effective Schrödinger equations are not the same as

the orbitals that we used to construct the equations??

A Problem of Consistency

We used initial guesses for the atomic orbitals,                              ,

to compute V1
eff and V2

eff in the Hartree Equations:                    . 
1 2 2 2( ) and ( )init initr r 

We then solved the equations to get new orbitals, 1 2 2 2( ) and ( )new newr r 

1 2andeff effV VIf these new orbitals had been used to calculate                     ,

we would have gotten different effective potentials.

Oy Vey!!! What a mess!!!

2

1 1 1 1 1 1 1

1

1 2
where

2

eff eff effH H V
r

        1 2 2

12

1
(2) (2)eff init initV

r
 

2

2 2 2 2 2 2 2

2

1 2
where

2

eff eff effH H V
r

        2 1 1

12

1
(1) (1)eff init initV

r
 
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The Solution:  Iterate to Self-Consistency

Repeat the procedure.  This time, use

to construct                       and solve the equations again. 

1 1 2 2( ) and ( )new newr r 

1 2andeff effV V

BUT: You have the same problem again.  The effective Hamiltonians

that were used to compute this newest pair of orbitals were constructed

from the older set of orbitals.

(1) go insane

Now, you’ll get an even newer pair of orbitals, 1 1 2 2( ) and ( )newer newerr r 

(2) quit Chemistry and establish

a multibillion dollar international

trucking conglomerate (please

remember me in your will).

Well, I suppose you could repeat the procedure again, and again, and

again, and again, until you either:
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Fortunately, the problem is not so dire.  Usually, you will find that

the new orbitals predicted by solving the equations get closer and

closer to the orbitals used to construct the effective Hamiltonians.

When they are sufficiently close, you stop, declare victory, and go

out and celebrate with a dozen Krispy Kreme donuts (or pastrami

sandwiches on rye, if that’s your preference).

When the output orbitals are consistent with the input orbitals,

you have achieved a “Self-Consistent Field” (SCF).

Often, you will reach the SCF criterion within 10-20 iterations,

although it may take 50-60 iterations or more in difficult cases.

While the procedure appears very tedious and time consuming,

it’s actually quite fast on modern computers.  A single SCF calculation

on a moderate sized molecule (with 50-100 electrons) can take well

under 1 second.
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A.  The total energy

2 2

1 1 2 2

1 2 12

1 1 2 2 1
( ) ( )

2 2
H r r

r r r
       

2 2

1 1 2 2

1 2 12

1 2 1 2 1
( ) ( )

2 2
r r

r r r

   
           

   

1 2

12

1
(1) (2)He HeH H H

r

 

   where 2 2

1 1 2 2

1 2

1 2 1 2
and

2 2

He HeH H
r r

 

       

H1 and H2 are just each the Hamiltonian for the electron in a He+ ion.

*E H d    1 2 1 2(1) (2) (1) (2)H   

We’re assuming that 1 and 2 have both been normalized.

1 2 1 2 1 2

12

1
(1) (2) (1) (2) (1) (2)He HeE H H

r
   

 

  
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  1 2 12E I I J

1 2

* *

1 1 1 1 2 2 2 2

1 2

12

( ) ( ) ( ) ( )

r r

r r r r
dr dr

r

           

1 1 1(1) (1)HeH 




12 1 2 1 2

12

1
(1) (2) (1) (2)J

r
   

I1 is the energy of an electron in a He+ ion.

I2 is the energy of an electron in a He+ ion.

J12 is the Coulomb Integral and represents the 

coulombic repulsion energy of the two electrons

Remember, this is the total energy of the two electrons.

1 2 1 2 1 2

12

1
(1) (2) (1) (2) (1) (2)He HeE H H

r
   

 

  

1 1 2 1 1 2(1) (2) (1) (1) (2)HeI H   


 2 2 1 1 1(2) (2) (1) (1) (1)HeH   




2 2 1(2) (2)HeH 


2 1 2 2 1 2(1) (2) (2) (1) (2)HeI H   


 1 1 2 2 2(1) (1) (2) (2) (2)HeH   



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B.  The Individual Orbital Energies, 1 and 2

1 1 12I J  

* *

1 1 2 2

12 1 2 1 2 1 2

12 12

1
where (1) (2) (1) (2)J dr dr

r r

   
   

         

2 2 12I J  
* *

1 1 2 2

12 1 2 1 2 1 2

12 12

1
where (1) (2) (1) (2)J dr dr

r r

   
   

         

The sum of orbital energies:    1 2 1 12 2 12I J I J      1 2 122I I J  
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C.  Total Energy versus sum of orbital energies

1 2 1 2 122I I J    The sum of orbital energies:

The total energy: 1 2 12E I I J  

The sum of the orbital energies has one too many Coulomb

integrals, J12.

The reason is that each orbital energy has the full electron-electron

repulsion – You’re counting it one time too many!!!
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1 2 1 2 122I I J    

1 2 12E I I J  

Therefore:
1 12 2 12 12( ) ( )E I J I J J    

1 2 12E J   

We conclude that one must subtract the Coulomb repulsive energy, J12,

from the sum of orbital energies, 1+2, to correct for the double counting 

of the repulsion between the two electrons.


