## Lecture 8

## Approximation methods

1. Time-Independent Perturbation Theory
2. Variation method

## Time Independent Perturbation Theory <br> Introduction

One often finds in QM that the Hamiltonian for a particular problem can be written as:

$$
H=H^{(0)}+H^{(1)}
$$

$$
H=\frac{\hbar^{2} \frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}+\gamma x^{3}+\delta x^{4}+\ldots}{\mathbf{H}^{(0)}}
$$

Exactly Solvable Correction Term

$$
\Delta E=\int \psi^{(0) * H^{(1)} \psi^{(0)} d \tau} \begin{aligned}
& \text { is the first order perturbation theory } \\
& \text { correction to the energy. }
\end{aligned}
$$

## Brief Introduction to Second Order Perturbation Theory

As noted above, one also can obtain additional corrections to the energy using higher orders of Perturbation Theory; i.e.

$$
E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\ldots
$$

$\mathrm{E}_{\mathrm{n}}{ }^{(0)}$ is the energy of the $\mathrm{n}^{\text {th }}$ level for the unperturbed Hamiltonian
$\mathrm{E}_{\mathrm{n}}{ }^{(1)}$ is the first order correction to the energy, which we have called $\Delta \mathrm{E}$
$\mathrm{E}_{\mathrm{n}}{ }^{(2)}$ is the second order correction to the energy, etc.

The second order correction to the energy of the $\mathrm{n}^{\text {th }}$ level is given by:

$$
E_{n}^{(2)}=\sum_{k=1}^{\infty} \frac{\left.\left|\left\langle\psi_{k}^{(0)}\right| H^{(1)}\right| \psi_{n}^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}} \quad \text { for } k \neq n
$$

where $\left\langle\psi{ }_{k}^{(0)}\right| H^{(1)}\left|\psi_{n}^{(0)}\right\rangle=\int \psi_{k}^{(0)} * H^{(1)} \psi_{n}^{(0)} d \tau$

If the correction is to the ground state (for which we'll assume $n=1$ ), then:

$$
\begin{gathered}
E_{1}^{(2)}=\sum_{k=2}^{\infty} \frac{\left.\left|\left\langle\psi_{k}^{(0)}\right| H^{(1)}\right| \psi_{1}^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{k}^{(0)}} \\
E_{1}^{(2)}=\frac{\left.\left|\left\langle\psi_{2}^{(0)}\right| H^{(1)}\right| \psi_{1}^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{2}^{(0)}}+\frac{\left.\left|\left\langle\psi_{3}^{(0)}\right| H^{(1)}\right| \psi_{1}^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{3}^{(0)}}+\frac{\left.\left|\left\langle\psi_{4}^{(0)}\right| H^{(1)}\right| \psi_{1}^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{4}^{(0)}}+\cdots
\end{gathered}
$$

Note that the second order Perturbation Theory correction is actually an infinite sum of terms.

However, the successive terms contribute less and less to the overall correction as the energy, $\mathrm{E}_{\mathrm{k}}{ }^{(0)}$, increases.

## The Variational Method

## Theory:

For a system whose Hamiltonian operator H is time independent and whose lowest Energy Eigen value is E, if $\phi$ is any normalized well behaved Function of the coordinates of the system particle that satisfy the Boundary condition of the problem then
$\int \varphi^{*} H \varphi d \tau \geq E_{0} \quad \varphi$ is normalized wavefunction
if the function $\varphi$ is not normalized then

$$
\frac{\int \varphi^{*} H \varphi d \tau}{\int \varphi^{*} \varphi d \tau} \geq E_{0}
$$

$\varphi$ is called trial function
$\int \varphi^{*} H \varphi d \tau$ called Variation Integral $=\mathrm{W}$

## The Variational Method

Procedure:
We try many trial function and the one give the Lower value of variational integral, the better Approximation we have for E1

In practice:
I. We put several parameters into the trial function $\phi$
II. Then we vary the parameters so as to mininmize the variational integral W
III. The lowest one is the best $\quad \frac{\partial W}{\partial c}=0$

$$
<E>=E_{\text {trial }}=\frac{\langle\varphi| H|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\int \varphi^{*} H \varphi d \tau}{\int \varphi^{*} \varphi d \tau} \geq E_{0}
$$

## Linear Variation Functions

## GO Back to Matrix, you need it

A special kind of variation function widely used in the study of molecules is the linear variation function.
A linear variation function is a linear combination of $n$ linearly independent functions $f_{1}, f_{2}, \mathrm{c}, f_{n}$ :
So $\phi=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+\ldots \ldots .+c_{n} f_{n}$

A linear variation function is a linear combination of $n$ linearly independent functions $f_{1}, f_{2}, \mathrm{c}, f_{n}$ :
So $\Phi=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+\ldots \ldots .+c_{n} f_{n}+$
$\phi=\sum_{j=1}^{n} c_{j} f_{j} \quad \phi$ trial function is real. $\quad c_{j}$ Parameters to be determined
$\mathrm{f}_{\mathrm{j}}$ called Basis set ( they must stasfy the boundary condition)
so the Variation function
$\int \phi^{*} \phi \partial t=\int \sum_{j=1}^{n} c_{j} f_{j} \sum_{k=1}^{n} c_{k} f_{k}=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} \int f_{j} f_{k} \partial t$
assume $\quad S_{j k}=\int f_{j} f_{k} \partial t \quad$ called overlap integral
$\int \phi^{*} \phi \partial t=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} S_{j k}$
the variational integral $W=\frac{\int \phi^{*} H \phi \partial t}{\int \phi^{*} \phi \partial t}$
$\phi=\sum_{j=1}^{n} c_{j} f_{j} \quad \phi$ trial function is real. $\quad \mathrm{c}_{j}$ Parameters to be determined
$\mathrm{f}_{\mathrm{j}}$ called Basis set ( they must stasfy the boundary condition)
so the Variation function

$$
\int \phi^{*} \phi \partial t=\int \sum_{j=1}^{n} c_{j} f_{j} \sum_{k=1}^{n} c_{k} f_{k}=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} \int f_{j} f_{k} \partial t
$$

the variational integral $\quad W=\frac{\int \phi^{*} H \phi \partial t}{\int \phi^{*} \phi \partial t}$ for the numenator

$$
\int \phi^{*} H \phi \partial t=\int \sum_{j=1}^{n} c_{j} f_{j} H \sum_{k=1}^{n} c_{k} f_{k}=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} \int f_{j} H f_{k} \partial t
$$

$$
\text { assume } \quad H_{j k}=\int f_{j} H f_{k} \partial t
$$

$$
\int \phi^{*} \phi \partial t=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} H_{j k} \quad \int \phi^{*} \phi \partial t=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} S_{j k}
$$

$$
W=\frac{\int \phi^{*} H \phi \partial t}{\int \phi^{*} \phi \partial t}=\frac{\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} H_{j k}}{\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} S_{j k}}
$$

So lets evaluate it.

$$
W=\frac{\int \phi^{*} H \phi \partial t}{\int \phi^{*} \phi \partial t}=\frac{\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} H_{j k}}{\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} S_{j k}} \quad \text { and so } W \sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} S_{j k}=\sum_{j=1}^{n} c_{j} \sum_{k=1}^{n} c_{k} H_{j k}
$$

we can minimize Win a way to approach a position of $\mathrm{E}_{1}\left[W \geq E_{1}\right]$.
The variational integral W is afunction of of the n independent variable $\mathrm{W}=\mathrm{W}\left(\mathrm{c}_{1}, c_{2}, c_{3} \ldots \ldots . c_{n}\right)$
minimize W mean $\frac{\partial W}{\partial c_{i}}=0$
the proof is not important lets go to the results
$\sum_{k=1}^{n}\left(H_{i k}-S_{i k} W\right) c_{k}=0 \quad i=1,2,3,4,5 \ldots \ldots . ., n$
It is a set of simultaneous Linear homogeneous equations in the unknown $c_{1}, c_{2}, c_{3}, \ldots c_{n} f_{n}$

$$
\begin{equation*}
\phi=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+c_{4} f_{4}+\ldots \ldots \ldots \ldots \ldots+c_{n} f_{n}=\sum_{j=1}^{n} c_{j} f_{j} \tag{Slide 10}
\end{equation*}
$$

## The solution of the equation is:

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(H_{i k}-S_{i k} W\right) c_{k}=0 \quad i=1,2,3,4,5 \ldots \ldots ., n \\
& \left(H_{11}-S_{11} W\right) c_{1}+\left(H_{12}-S_{12} W\right) c_{2}+\left(H_{13}-S_{13} W\right) c_{1}+\ldots \ldots \ldots \ldots \ldots+\left(H_{1 n}-S_{1 n} W\right) c_{n}=0 \\
& \left(H_{21}-S_{21} W\right) c_{1}+\left(H_{22}-S_{22} W\right) c_{2}+\left(H_{23}-S_{23} W\right) c_{1}+\ldots \ldots \ldots \ldots \ldots+\left(H_{2 n}-S_{2 n} W\right) c_{n}=0 \\
& \left(H_{31}-S_{31} W\right) c_{1}+\left(H_{32}-S_{32} W\right) c_{2}+\left(H_{33}-S_{33} W\right) c_{1}+\ldots \ldots \ldots \ldots . .+\left(H_{3 n}-S_{3 n} W\right) c_{n}=0 \\
& \cdot \\
& \left(H_{11}-S_{11} W\right) c_{1}+\left(H_{12}-S_{12} W\right) c_{2}+\left(H_{13}-S_{13} W\right) c_{1}+\ldots \ldots \ldots \ldots \ldots+\left(H_{1 n}-S_{1 n} W\right) c_{n}=0 \\
& \left(\begin{array}{ccc}
H_{11}-S_{11} W & H_{12}-S_{22} W \ldots & H_{1 n}-S_{1 n} W \\
\vdots & \ddots & \vdots \\
H_{n 1}-S_{n 1} W & H_{n 2}-S_{n 2} W \ldots & H_{n n}-S_{n n} W
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0
\end{aligned}
$$

Matrix used to solve it ..........for $n=2$

$$
\left(\begin{array}{ll}
H_{11}-S_{11} W & H_{12}-S_{12} W \\
H_{21}-S_{21} W & H_{22}-S_{22} W
\end{array}\right)\binom{c_{1}}{c_{2}}=0 \quad \operatorname{det}\left(H_{i j}-S_{i j} W\right)=0
$$

## Example:

Add a functions to the function $x(1-x)$ to form a linear variation function for a particle in 1-D box of length I .Find the approximate energies and wave function of the lowest four states?

## Answer:

$\phi=\sum_{j=1}^{n} c_{j} f_{j} \quad \mathrm{n}=4$ so $\quad \phi=\sum_{j=1}^{4} c_{j} f_{j}$
$f_{1}=x(l-x)$
$f_{2}=x^{2}(l-x)^{2} f_{2}$ is well behaved and obeys boundary conditions at $x=0$ and $x=l$
There are an infinite number of possible well-behaved functions that could be used for $f 2, f 3$, and $f 4$. The function $f_{2}$ obeys the boundary conditions of vanishing at $x=0$ and $x=l$.
we shall add in two functions that are odd. An odd function must vanish at the origin and vanish at the box midpoint $x=1 / 2 l$, as well as at $x=0$ and $l$. A simple function with these properties is $f 3$ and f 4

## We got f3 and f4 by multiply f2 and f3 by (1/2 I-x)

$$
\begin{aligned}
& f_{1}=x(l-x) \text { multiply by }\left(\frac{1}{2} l-x\right) \text { to get } f_{3} \\
& f_{2}=x^{2}(l-x)^{2} \text { multiply by }\left(\frac{1}{2} l-x\right) \text { to get } f_{4} \\
& f_{3}=x(l-x)\left(\frac{1}{2} l-x\right) \\
& f_{4}=x^{2}(l-x)^{2}\left(\frac{1}{2} l-x\right)
\end{aligned}
$$

since $f_{1}$ and $f_{2}$ are even and $f_{3}$ and $f_{4}$ are odd so $S_{13}=S_{31}=0 \quad S_{14}=S_{41}=0 \quad S_{23}=S_{32}=0 \quad S_{24}=S_{42}=0$ and

$$
H_{13}=\mathrm{H}_{31}=0 \quad H_{14}=\mathrm{H}_{41}=0 \quad H_{23}=\mathrm{H}_{32}=0 \quad H_{24}=\mathrm{H}_{42}=0
$$

## The secular equation becomennce

$$
\left|\begin{array}{llll}
H_{11}-S_{11} W & H_{12}-S_{12} W & H_{13}-S_{13} W & H_{14}-S_{14} W \\
H_{21}-S_{21} W & H_{22}-S_{22} W & H_{23}-S_{23} W & H_{24}-S_{24} W \\
H_{31}-S_{31} W & H_{32}-S_{32} W & H_{33}-S_{33} W & H_{34}-S_{34} W \\
H_{41}-S_{41} W & H_{42}-S_{42} W & H_{43}-S_{43} W & H_{44}-S_{44} W
\end{array}\right|\left|\begin{array}{ll}
S_{13}=\mathrm{S}_{31}=0 & S_{14}=\mathrm{S}_{41}=0 \\
S_{23}=\mathrm{S}_{32}=0 & S_{24}=\mathrm{S}_{42}=0 \\
\text { and } \\
H_{13}=\mathrm{H}_{31}=0 & H_{14}=\mathrm{H}_{41}=0 \\
H_{23}=\mathrm{H}_{32}=0 & H_{24}=\mathrm{H}_{42}=0
\end{array}\right|
$$

so

$$
\begin{aligned}
& \left|\begin{array}{cccc}
H_{11}-S_{11} W & H_{12}-S_{12} W & 0 & 0 \\
H_{21}-S_{21} W & H_{22}-S_{22} W & 0 & 0 \\
0 & 0 & H_{33}-S_{33} W & H_{34}-S_{34} W \\
0 & 0 & H_{43}-S_{43} W & H_{44}-S_{44} W
\end{array}\right|=0 \text { so } \\
& \left(\begin{array}{ll}
H_{11}-S_{11} W & H_{12}-S_{12} W \\
H_{21}-S_{21} W & H_{22}-S_{22} W
\end{array}\right)\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=0 \\
& \left(H_{11}-S_{11} W\right) c_{1}+\left(H_{12}-S_{12} W\right) c_{2}=0 \\
& \left(H_{21}-S_{21} W\right) c_{1}+\left(H_{22}-S_{22} W\right) c_{2}=0 \\
& \left(\begin{array}{ll}
H_{33}-S_{33} W & H_{34}-S_{34} W \\
H_{43}-S_{43} W & H_{44}-S_{44} W
\end{array}\right)\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right]=0 \\
& \left(H_{33}-S_{33} W\right) c_{3}+\left(H_{34}-S_{34} W\right) c_{3}=0 \\
& \left(H_{43}-S_{43} W\right) c_{4}+\left(H_{44}-S_{44} W\right) c_{4}=0
\end{aligned}
$$

## Evaluate $\mathrm{H}_{11} \mathrm{~S}_{11} \ldots$ etc

$$
\begin{aligned}
& H_{11}=\left\langle f_{1} \vdots H \vdots f_{1}>=\int_{0}^{l} x(l-x)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right)[x(l-x)] \partial x=\frac{\hbar^{2} l^{3}}{6 m}\right. \\
& S_{11}=<f_{1} f_{1}>=\int_{0}^{l} x(l-x)[x(l-x)] \partial x=\frac{l^{5}}{30} \\
& H_{12}=H_{21}=\frac{\hbar^{2} l^{5}}{30 m} \quad S_{12}=S_{21}=\frac{l^{7}}{140} \quad H_{22}=\frac{\hbar^{2} l^{7}}{105 m} \quad S_{22}=\frac{l^{9}}{630} \\
& H_{33}=\frac{\hbar^{2} l^{5}}{40 m} \quad S_{33}=\frac{l^{7}}{840} \quad H_{44}=\frac{\hbar^{2} l^{9}}{1260 m} \quad S_{44}=\frac{l^{11}}{27720} \\
& H_{34}=H_{43}=\frac{\hbar^{2} l^{7}}{280 m} \quad S_{43}=S_{34}=\frac{l^{9}}{5040}
\end{aligned}
$$

## So

## Energy states

$\left(\begin{array}{ll}\frac{\hbar^{2} l^{3}}{6 m}-\frac{l^{5}}{30} W & \frac{\hbar^{2} l^{5}}{30 m}-\frac{l^{7}}{140} W \\ \frac{\hbar^{2} l^{5}}{30 m}-\frac{l^{7}}{140} W & \frac{\hbar^{2} l^{7}}{105 m}-\frac{l^{9}}{630} W\end{array}\right)=0$ so
$W=\left(\frac{\hbar^{2}}{m l^{2}}\right)(28 \pm \sqrt{532})=\binom{0.1250018 h^{2} / m l^{2}}{1.293495 h^{2} / m l^{2}}$ and from $\mathrm{c}_{3}$ and $\mathrm{c}_{4}$ matrix
$W=\left(\frac{\hbar^{2}}{m l^{2}}\right)(60 \pm \sqrt{1620})=\binom{0.500293 h^{2} / m l^{2}}{2.5393425 h^{2} / m l^{2}}$
so the $\left(m l^{2} / h^{2}\right) W$ values are:
$0.1250018,0.500293,1.293495$ and 2.5393425 are compared to
$0.125 \quad, 0.5 \quad, 1.125$ and 2
for the four lewst stated in exact solution of PIB

## Wave functions

Substitution of $W=0.1250018 h^{2} / \mathrm{ml}^{2}$ in
$\left(H_{11}-S_{11} W\right) c_{1}+\left(H_{12}-S_{12} W\right) c_{2}=0$

$$
\left(H_{21}-S_{21} W\right) c_{1}+\left(H_{22}-S_{22} W\right) c_{2}=0
$$

give
$0.023095 c_{1}-0.02038 \quad c_{2} l^{2}=0$
$-0.061144 c_{1}+0.053960 c_{2} l^{2}=0$
assume $\mathrm{c}_{1}=\mathrm{k}$ so for eqn $10.023095 c_{1}-0.02038 \quad c_{2} l^{2}=0$ willbe
$0.023095 k=0.02038 \quad c_{2} l^{2} \Rightarrow c_{2}=1.132 \mathrm{k} / l^{2}$
to find $\mathrm{k}\left\langle\phi_{1} / \phi_{1}\right\rangle=1$ and so $\left\langle\left(\mathrm{c}_{1} f_{1}+c_{2} f_{2}\right) /\left(\mathrm{c}_{1} f_{1}+c_{2} f_{2}\right)\right\rangle$
$=<\left(k f_{1}+1.132 k / l^{2}\right) /\left(k f_{1}+1.132 k / l^{2}\right)=1$
$k=4.404 / l^{5 / 2}$
$\phi_{1}=\mathrm{c}_{1} f_{1}+c_{2} f_{2}=4.404 f_{1} l^{5 / 2}+4.990 f_{1}{ }^{9 / 2}$
$\phi_{1}=l^{-1 / 2}\left[4.404(x / l)(1-(x / l))+4.990(x / l)^{2}(1-(x / l))^{2}\right]$
using $\mathrm{W} 2, \mathrm{~W} 3$ and W 4 we will get the follwing normailzed function in which $\mathrm{X}=\frac{x}{l}$

## The four wavefunctions

$$
\begin{aligned}
& X=\frac{x}{l} \\
& \phi_{1}=l^{-1 / 2}\left[4.404 X(1-X)+4.990 X^{2}(1-X)^{2}\right] \\
& \phi_{2}=l^{-1 / 2}\left[16.78 X(1-X)(1-X)\left(\frac{1}{2}-X\right)+71.85 X^{2}(1-X)^{2}\left(\frac{1}{2}-X\right)\right] \\
& \phi_{3}=l^{-1 / 2}\left[28.65 X(1-X)(1-X)-132.7 X^{2}(1-X)^{2}\right] \\
& \phi_{4}=l^{-1 / 2}\left[98.99 X(1-X)\left(\frac{1}{2}-X\right)-572.3 X^{2}(1-X)^{2}\left(\frac{1}{2}-X\right)\right]
\end{aligned}
$$

## Application

1. Time-Independent Perturbation Theory
2. Variation method

## The Helium Atom Schrödinger Equation

## The Hamiltonian

$$
\begin{aligned}
H= & \frac{p_{1}^{2}\left(\vec{r}_{1}\right)}{2 m}+\frac{p_{2}^{2}\left(\vec{r}_{2}\right)}{2 m}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}} \\
& \mathrm{KE}(1) \quad \mathrm{KE}(2) \quad \mathrm{PE}(1) \quad \mathrm{PE}(2) \mathrm{PE}(12) \\
H= & -\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}
\end{aligned}
$$

+Ze

Atomic Units: $\hbar=m=e=4 \pi \varepsilon_{0}=1$

$$
H=-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}
$$

$$
\begin{aligned}
& \nabla_{1}^{2}\left(\vec{r}_{1}\right)=\frac{1}{r_{1}^{2}} \frac{\partial}{\partial r_{1}}\left(r_{1}^{2} \frac{\partial}{\partial r_{1}}\right)+\frac{1}{r_{1}^{2} \sin ^{2} \theta_{1}} \frac{\partial}{\partial \theta_{1}}\left(\sin \theta_{1} \frac{\partial}{\partial \theta_{1}}\right)+\frac{1}{r_{1}^{2} \sin ^{2} \theta_{1}} \frac{\partial^{2}}{\partial \varphi_{1}^{2}} \\
& \nabla_{2}^{2}\left(\vec{r}_{2}\right)=\frac{1}{r_{2}^{2}} \frac{\partial}{\partial r_{2}}\left(r_{2}^{2} \frac{\partial}{\partial r_{2}}\right)+\frac{1}{r_{2}^{2} \sin ^{2} \theta_{2}} \frac{\partial}{\partial \theta_{2}}\left(\sin \theta_{2} \frac{\partial}{\partial \theta_{2}}\right)+\frac{1}{r_{2}^{2} \sin ^{2} \theta_{2}} \frac{\partial^{2}}{\partial \varphi_{2}^{2}}
\end{aligned}
$$

## The Schrödinger Equation

$$
\begin{aligned}
& H=-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} \begin{array}{c}
H \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right) \\
\\
\text { 世 depends upon the } \\
\text { coordinates of both electrons }
\end{array} \\
& H=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right]+\frac{1}{r_{12}} \\
& \text { Electron } \begin{array}{l}
\text { Can we separate variables? } \\
\text { Repulsion }
\end{array} \\
& \begin{array}{l}
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \\
\text { Nope!! The last term in the } \\
\text { Hamiltonian messes us up. }
\end{array}
\end{aligned}
$$

## The Experimental Electronic Energy of He



## Reference State

By definition, the QM reference state (for which $\mathrm{E}=0$ ) for atoms and molecules is when all nuclei and electrons are at infinite separation.

$$
E_{H e}=-\left[I E_{1}+I E_{2}\right]
$$

$$
\mathrm{E}_{\mathrm{He}}=-[24.59 \mathrm{eV}+54.42 \mathrm{eV}]
$$

$$
E_{\mathrm{He}}=-79.01 \mathrm{eV}
$$

$$
\text { or } \mathrm{E}_{\mathrm{He}}=-2.9037 \text { au (hartrees) }
$$

## The Independent Particle Model

$$
H=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right]+\frac{1}{1}
$$

If the $1 / r_{12}$ term is causing all the problems, just throw it out.

$$
H=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right]=H_{1}\left(\vec{r}_{1}\right)+H_{2}\left(\vec{r}_{2}\right)
$$

Separation of Variables: Assume that $\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right)$

$$
\begin{gathered}
{\left[H_{1}\left(\vec{r}_{1}\right)+H_{2}\left(\vec{r}_{2}\right)\right] \psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right)=E \psi_{1}(\vec{r}) \cdot \psi_{2}\left(\vec{r}_{2}\right)} \\
\psi_{2}\left(\vec{r}_{2}\right) H_{1}\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{1}\right)+\psi_{1}\left(\vec{r}_{1}\right) H_{2}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{2}\right)=E \psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \\
\frac{1}{\psi_{1}\left(\vec{r}_{1}\right)} H_{1}\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{1}\right)+\frac{1}{\psi_{2}\left(\vec{r}_{2}\right)} H_{2}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{2}\right)=E \\
\text { E }_{1}
\end{gathered}
$$

$$
\begin{gathered}
H_{1}\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{1}\right)=E_{1} \psi_{1}\left(\vec{r}_{1}\right) \quad \text { and } \quad H_{2}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{2}\right)=E_{2} \psi_{2}\left(\vec{r}_{2}\right) \\
{\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right] \psi_{1}\left(\vec{r}_{1}\right)=E_{1} \psi_{1}\left(\vec{r}_{1}\right) \quad\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right] \psi_{2}\left(\vec{r}_{2}\right)=E_{2} \psi_{2}\left(\vec{r}_{2}\right)}
\end{gathered}
$$

Hey!!! These are just the one electron Schrödinger Equations for "hydrogenlike" atoms. For $\mathrm{Z}=2$, we have $\mathrm{He}^{+}$.

We already solved this problem in Chapter 6.

## Wavefunctions

$\psi_{1}^{n_{l} l_{1} m_{1}}\left(\vec{r}_{1}\right)=A \cdot R_{n_{1} l_{1}}\left(r_{1}\right) \cdot Y_{l_{1} m_{1}}\left(\theta_{1}, \varphi_{1}\right) \quad \psi_{2}^{n_{2} l_{2} m_{2}}\left(\vec{r}_{2}\right)=A \cdot R_{n_{2} l_{2}}\left(r_{2}\right) \cdot Y_{l_{2} m_{2}}\left(\theta_{2}, \varphi_{2}\right)$

## Ground State Wavefunctions

(1s: $n=1, l=0, m=0$ )

$$
\psi_{1}^{100}\left(\vec{r}_{1}\right)=A \cdot e^{-Z r_{1}} \quad \psi_{2}^{100}\left(\vec{r}_{2}\right)=A \cdot e^{-Z r_{2}}
$$

Remember that in atomic units, $\mathrm{a}_{0}=1$ bohr

## Energies

$$
\begin{gathered}
E_{1}=-\frac{Z^{2}}{2 n_{1}^{2}} \quad E_{2}=-\frac{Z^{2}}{2 n_{2}^{2}} \\
E=E_{1}+E_{2}=-\frac{Z^{2}}{2 n_{1}^{2}}-\frac{Z^{2}}{2 n_{2}^{2}} \\
\text { Ground State Energy } \\
\left(\mathbf{n}_{1}=\mathbf{n}_{2}=1\right)
\end{gathered} \begin{gathered}
E=E_{1}+E_{2}=-\frac{Z^{2}}{2}-\frac{Z^{2}}{2}=-Z^{2}=-4 \text { a.u. (hartrees) } \\
Z=2 \text { for He } \\
E_{\text {exp }}=-2.9037 \text { a.u. (hartrees) }
\end{gathered}
$$

Our calculated Ground State Energy is 38\% lower than experiment.
This is because, by throwing out the $1 / r_{12}$ term in the Hamiltonian, we ignored the electron-electron repulsive energy, which is positive.

## Perturbation Theory Treatment of Helium

$$
H=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right]+\frac{1}{r_{12}}
$$

The Helium Hamiltonian can be rewritten as:

$$
\begin{gathered}
H=H^{(0)}+H^{(1)} \\
\text { where } H^{(0)}=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{Z}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{Z}{r_{2}}\right] \\
H^{(1)}=+\frac{1}{r_{12}}
\end{gathered}
$$

$H^{(0)}$ is exactly solvable, as we just showed in the independent particle method.
$\mathrm{H}^{(1)}$ is a small perturbation to the exactly solvable Hamiltonian.
The energy due to $\mathrm{H}^{(1)}$ can be estimated by First Order
Perturbation Theory.

## Zeroth Order Energy and Wavefunction

$$
H^{(0)} \psi^{(0)}=E^{(0)} \psi^{(0)}
$$

The "Zeroth Order" Ground State energy is:

$$
E=E_{1}+E_{2}=-\frac{Z^{2}}{2}-\frac{Z^{2}}{2}=-Z^{2} \quad \text { a.u. }=-4.00 \text { a.u. }
$$

The "Zeroth Order" wavefunction is the product of $\mathrm{He}^{+}$ 1s wavefunctions for electrons 1 and 2

$$
\begin{gathered}
\psi^{(0)}=\psi_{1}^{100}\left(\vec{r}_{1}\right) \cdot \psi_{2}^{100}\left(\vec{r}_{2}\right)=\left[\left(\frac{Z^{3}}{\pi}\right)^{1 / 2} e^{-Z r_{1}}\right] \cdot\left[\left(\frac{Z^{3}}{\pi}\right)^{1 / 2} e^{-Z r_{2}}\right] \\
\psi^{(0)}=\frac{Z^{3}}{\pi} e^{-Z\left(r_{1}+r_{2}\right)}=A e^{-Z\left(r_{1}+r_{2}\right)}
\end{gathered}
$$

## First Order Perturbation Theory Correction to the Energy

we learned that the correction to the energy,
$\Delta E\left[\right.$ or $\left.E^{(1)}\right]$ is:

$$
\Delta E=E^{(1)}=\int \psi^{(0)} * H^{(1)} \psi^{(0)} d \tau
$$

For the He atom: $\quad H^{(1)}=+\frac{1}{r_{12}} \quad$ and $\quad \psi^{(0)}=\frac{Z^{3}}{\pi} e^{-Z\left(r_{1}+r_{2}\right)}=A e^{-Z\left(r_{1}+r_{2}\right)}$
Therefore: $\Delta E=A^{2} \int d \vec{r}_{1} \int d \vec{r}_{2} e^{-2 Z r_{r}} e^{-2 Z r_{2}} \frac{1}{r_{12}} \quad$ where $\quad \begin{aligned} & d \vec{r}_{1} \equiv r_{1}^{2} \sin \left(\theta_{1}\right) d r_{d} d \theta_{1} d \varphi_{1} \\ & \\ & d \vec{r}_{2} \equiv r_{2}^{2} \sin \left(\theta_{2}\right) d r_{2} d \theta_{2} d \varphi_{2}\end{aligned}$
The evaluation of this integral is rather difficult, and in outlined in several texts.

$$
\Delta E=\frac{5}{8} Z
$$

Therefore, using First Order Perturbation Theory, the total electronic energy of the Helium atom is:

$$
E=E^{(0)}+\Delta E=-\frac{Z^{2}}{2}-\frac{Z^{2}}{2}+\frac{5}{8} Z=-2^{2}+\frac{5}{8} \cdot 2=-2.75 \text { a.u. }
$$

This result is $5.3 \%$ above (less negative) the experimental energy of -2.9037 a.u.

However, remember that we made only the First Order Perturbation Theory correction to the energy.

| Order | Energy | \% Error |
| :---: | :--- | :---: |
| 0 | -4.0 a. u. | $-38 \%$ |
| 1 | -2.75 | +5 |
| 2 | -2.91 | -0.2 |
| 13 | -2.9037 | $\sim 0$ |

## Variational Method Treatment of Helium

Recall that we proved earlier in this Chapter that, if one has an approximate "trial" wavefunction, $\phi$, then the expectation value for the energy must be either higher than or equal to the true ground state energy. It cannot be lower!!

$$
<E\rangle=E_{\text {trial }}=\frac{\langle\varphi| H|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{\int \varphi^{*} H \varphi d \tau}{\int \varphi^{*} \varphi d \tau} \geq E_{0}
$$

This provides us with a very simple "recipe" for improving the energy. The lower the better!!

When we calculated the He atom energy using the "Independent Particle Method", we obtained an energy (-4.0 au) which was lower than experiment (-2.9037 au).
Isn't this a violation of the Variational Theorem??
No, because we did not use the complete Hamiltonian in our calculation.

## A Trial Wavefunction for Helium

Recall that when we assumed an Independent Particle model for Helium, we obtained a wavefunction which is the product of two $1 \mathrm{~s} \mathrm{He}+$ functions.

$$
\varphi=\psi_{1}^{100}\left(\vec{r}_{1}\right) \cdot \psi_{2}^{100}\left(\vec{r}_{2}\right)=\left(\frac{Z^{3}}{\pi}\right)^{1 / 2} e^{-Z r_{1}} e^{-Z r_{2}}=\left(\frac{Z^{3}}{\pi}\right)^{1 / 2} e^{-Z\left(r_{1}+r_{2}\right)}
$$

For a trial wavefunction on which to apply the Variational Method, we can use an "effective" atomic number, $Z$ ', rather than $Z=2$.

By using methods similar to those above (Independent Particle Model + First Order Perturbation Theory Integral), it can be shown that

$$
\begin{aligned}
& \text { for } H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} \quad \mathrm{Z}=2 \text { for } \mathrm{He} \\
& \text { and } \varphi=\left(\frac{Z^{\prime 3}}{\pi}\right)^{1 / 2} e^{-Z^{\prime}\left(r_{1}+r_{2}\right)}
\end{aligned}
$$

$$
E_{\text {trial }}=\frac{\langle\varphi| H|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}=\frac{Z^{\prime 2}}{\underset{\mathrm{KE}(1)}{2}+\frac{Z^{\prime 2}}{2}-Z Z^{\prime}-Z Z^{\prime}+\frac{5}{8} Z^{\prime}}
$$

$$
E_{\text {trial }}=Z^{\prime 2}-2 Z Z^{\prime}+\frac{5}{8} Z^{\prime}=Z^{\prime 2}-4 Z^{\prime}+\frac{5}{8} Z^{\prime}=Z^{\prime 2}-\frac{27}{8} Z^{\prime}
$$

$\mathrm{He}: Z=2$

(Z E)

We want to find the value of $Z^{\prime}$ which minimizes the energy, $\mathrm{E}_{\text {trial }}$.

Once again, we can either use trial-and-error (Yecch!!) or basic Calculus.

$$
E_{\text {trial }}=Z^{\prime 2}-\frac{27}{8} Z^{\prime}
$$

At minimum: $\frac{d E_{\text {trial }}}{d Z^{\prime}}=0=2 Z^{\prime}-\frac{27}{8}$
For lowest $E_{\text {trial }}: \quad Z^{\prime}=\frac{27}{16}=1.6875$


$$
\begin{aligned}
& E_{\text {trial }}=\left(\frac{27}{16}\right)^{2}-\frac{27}{8} \cdot \frac{27}{16} \\
& E_{\text {trial }}=-2.848 \text { au }(1.9 \% \text { higher than experiment })
\end{aligned}
$$

vs. $E_{\text {expt }}=-2.9037$ au
The lower value for the "effective" atomic number ( $Z$ ' $=1.69 \mathrm{vs} . ~ Z=2$ ) reflects "screening" due to the mutual repulsion of the electrons.

## Better Variational Wavefunctions

One can improve (i.e. lower the energy) by employing improved wavefunctions with additional variational parameters.

## A Two Parameter Wavefunction

Let the two electrons have different values of $Z_{\text {eff }}$ :

$$
\varphi=A\left[e^{-Z_{1}^{\prime} r_{1}} e^{-Z_{2} r_{2}}+e^{-Z_{1}^{\prime \prime} r_{1}} e^{-Z^{\prime} r_{2}}\right] \text { (we must keep treatment of the }
$$ two electrons symmetrical)

If one computes $E_{\text {trial }}$ as a function of $Z^{\prime}$ and $Z$ " and then finds the values of the two parameters that minimize the energy, one finds:

$$
\left.Z_{Z}^{\prime}=1.19 \quad E_{\text {trial }}=-2.876 \text { au ( } 1.0 \% \text { higher than experiment }\right)
$$

The very different values of Z' and Z" reflects correlation between the positions of the two electrons; i.e. if one electron is close to the nucleus, the other prefers to be far away.

## Another Wavefunction Incorporating Electron Correlation

$$
\varphi=A\left[e^{-Z^{\prime}\left(r_{1}+r_{2}\right)}\left(1+b \cdot r_{12}\right)\right]
$$

When $E_{\text {trial }}$ is evaluated as a function of $Z$ ' and $b$, and the values of the two parameters are varied to minimize the energy, the results are:

$$
\begin{aligned}
& Z^{\prime}=1.19 \quad E_{\text {trial }}=-2.892 \text { au }(0.4 \% \text { higher than experiment }) \\
& b=0.364
\end{aligned}
$$

The second term, $1+\mathrm{br}_{12}$, accounts for electron correlation.
It increases the probability (higher $\phi^{2}$ ) of finding the two electrons further apart (higher $\mathrm{r}_{12}$ ).

## A Three Parameter Wavefunction

$$
\varphi=A\left[\left(e^{-Z^{\prime} r_{1}} e^{-Z " r_{2}}+e^{-Z " r_{i}} e^{-Z r_{2}}\right) \bullet\left(1+b \cdot r_{12}\right)\right]
$$

We have incorporated both ways of including electron correlation.

When $E_{\text {trial }}$ is evaluated as a function of $Z^{\prime}, Z^{\prime \prime}$ and $b$, and the values of the 3 parameters are varied to minimize the energy, the results are:

$$
\begin{aligned}
& Z^{\prime}=1.435 \quad E_{\text {trial }}=-2.9014 \mathrm{au}(0.08 \% \text { higher than experiment }) \\
& Z^{\prime \prime}=2.209 \\
& b=0.292
\end{aligned}
$$

## Even More Parameters

When we used a wavefunction of the form: $\varphi=A\left[e^{-Z\left(\gamma_{1}+t_{2}\right)}\left(1+b \cdot r_{12}\right)\right]$
The variational energy was within $0.4 \%$ of experiment.
We can improve upon this significantly by generalizing $\phi$ to:

$$
\varphi=A\left[e^{-Z^{\prime}\left(r_{1}+r_{2}\right)}\left(1+g\left(r_{1}, r_{2}, r_{12}\right)\right]\right.
$$

$g\left(r_{1}, r_{2}, r_{12}\right)$ is a polynomial function of the 3 interparticle distances.
Hylleras (1929) used a 9 term polynomial ( 10 total parameters) to get: $\mathrm{E}_{\text {trial }}=-2.9036$ au ( $0.003 \%$ higher than experiment)

Kinoshita (1957) used a 38 term polynomial ( 39 total parameters) to get: $\mathrm{E}_{\text {trial }}=-2.9037$ au ( $\sim 0 \%$ Error)
To my knowledge, the record to date was a 1078 parameter wavefunction [Pekeris (1959)]

## A Summary of Results

$$
E_{\text {expt. }}=-2.9037 \mathrm{au}
$$

## Wavefunction <br> Energy <br> \% Error

| $A e^{-Z\left(r_{1}+r_{2}\right)}$ | -2.75 au | $+5.3 \%$ |
| :--- | :--- | :--- |
| $A e^{-Z\left(r_{i}+r_{2}\right)}$ | -2.848 | $+1.9 \%$ |

$A\left[e^{-Z^{\prime} r_{2}} e^{-Z^{\prime \prime} r_{2}}+e^{-Z^{\prime \prime} r_{1}} e^{-Z^{\prime} r_{2}}\right] \quad-2.876 \quad+1.0 \%$
$A\left[e^{-Z^{\prime}\left(r_{1}+r_{2}\right)}\left(1+b \cdot r_{12}\right)\right] \quad-2.892 \quad+0.4 \%$

$$
\begin{array}{rcc}
A\left[\left(e^{-Z r_{i} r^{-Z r_{2}}}+e^{-Z \eta_{r_{2}}} e^{-Z_{2}^{\prime} r_{2}}\right) \cdot\left(1+b \cdot r_{12}\right)\right] & -2.9014 & +0.08 \% \\
\varphi=A\left[e^{-Z\left(r_{1}+r_{2}\right)}\left(1+g\left(r_{1}, r_{2}, r_{12}\right)\right]\right. & -2.9037 & \sim 0 \%
\end{array}
$$

Notes: 1. The computed energy is always higher than experiment.
2. One can compute an "approximate" energy to whatever degree of accuracy desired.

## Application to Multi electron Atoms

## The Hamiltonian for Multielectron Atoms

## Helium

SI Units: $\quad H=-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}$
Atomic Units: $\quad H=-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}$
Multielectron Atoms

$$
\begin{gathered}
H=-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}-\sum_{i=1}^{N} \frac{Z}{r_{i}}+\sum_{i=1}^{N-1} \sum_{j>i} \frac{1}{r_{i j}} \\
\text { Elect } \begin{array}{c}
\text { Elect- } \\
\text { KE } \quad \begin{array}{c}
\text { Elect- } \\
\text { NE }
\end{array} \quad \begin{array}{cl}
\text { Elect } \\
\text { PE }
\end{array} \\
\sum_{i=1}^{N-1} \sum_{j>i} \frac{1}{r_{i j}}= \\
r_{12} \\
r_{13} \\
r_{13}
\end{array}+\cdots+\frac{1}{r_{23}}+\frac{1}{r_{24}}+\cdots+\frac{1}{r_{34}}+\frac{1}{r_{35}}+\cdots
\end{gathered}
$$

## Atomic Orbitals

In performing quantum mechanical calculations on multielectron atoms, it is usually assumed that each electron is in an atomic orbital, $\phi$, which can be described as a Linear Combination of Hydrogen-like orbitals, which are called Slater Type Orbitals (STOs).

These STOs are usually denoted as $\chi_{i}$

$$
\text { Thus: } \varphi=\sum c_{i} \chi_{i}
$$

The goal of quantum mechanical calculations is to find the values of the $c_{i}$ which minimize the energy (via the Variational Principle).

These STOs are also used to characterize the Molecular Orbitals occupied by electrons in molecules.

## The Hartree Method: Helium

Hartree first developed the theory, but did not consider that electron wavefunctions must be antisymmetric with respect to exchange.

Fock then extended the theory to include antisymmetric wavefunctions.
Lets proceed as follows:

1. Outline Hartree method as applied to Helium
2. Show the results for atoms with $>2$ electrons
3. Discuss antisymmetric wavefunctions for multielectron atoms (Slater determinants)
4. Show how the Hartree equations are modified to get the the "Hartree-Fock" equations.

## Basic Assumption

Each electron is in an orbital, $\phi_{i}$ (e.g. a sum of STOs).
The total "variational" wavefunction is the product of one electron wavefunctions: $\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\varphi_{1}\left(\vec{r}_{1}\right) \cdot \varphi_{2}\left(\vec{r}_{2}\right)$

## Procedure

"Guess" initial values the individual atomic orbitals: $\varphi_{1}^{\text {init }}\left(\vec{r}_{1}\right)$ and $\varphi_{2}^{\text {init }}\left(\vec{r}_{2}\right)$ (This would be an initial set of coefficients in the linear combination of STOs). i.e. $\phi_{1}=\sum c_{i} \chi_{i}=c_{1} \chi_{1}+c_{2} \chi_{2}+c_{3} \chi_{3}+\ldots$

Let's first look at electron \#1. Assume that its interaction with the second electron (or with electrons \#2, \#3, \#4, ... in multielectron atoms) is with the average "smeared" out electron density of the second electron.

SI Units

$$
\begin{aligned}
V_{1}^{\text {eff }}\left(\vec{r}_{1}\right)=e \cdot \int \frac{e\left|\varphi_{2}^{\text {init }}\left(\vec{r}_{2}\right)\right|^{2}}{4 \pi \varepsilon_{0} r_{12}} d \vec{r}_{2} \quad \text { or } \quad V_{1}^{\text {eff }}\left(\vec{r}_{1}\right) & =\int \frac{\left|\varphi_{2}^{\text {init }}\left(\vec{r}_{2}\right)\right|^{2}}{r_{12}} d \vec{r}_{2} \\
& =\left\langle\varphi_{2}^{\text {init }}(2)\right| \frac{1}{r_{12}}\left|\varphi_{2}^{\text {init }}(2)\right\rangle
\end{aligned}
$$

It can be shown (using the Variational Principle and a significant amount of algebra) that the "effective" Schrödinger equation for electron \#1 is:

$$
\begin{gathered}
H_{1}^{\text {eff }} \varphi_{1}=\varepsilon_{1} \varphi_{1} \quad \text { where } \quad H_{1}^{\text {eff }}= \\
-\frac{1}{2} \nabla_{1}^{2}-\frac{2}{r_{1}}+V_{1}^{\text {eff }} \quad V_{1}^{\text {eff }}=\left\langle\varphi_{2}^{\text {init }}(2)\right| \frac{1}{r_{12}}\left|\varphi_{2}^{\text {init }}(2)\right\rangle \\
\text { elect elect- "Effective" } \\
\text { KE } \begin{array}{c}
\text { Nuc elect-elect } \\
\text { PE }
\end{array} \text { PE }
\end{gathered}
$$

This equation can be solved exactly to get a new estimate for the function, $\phi_{1}{ }^{\text {new }}$ (e.g. a new set of coefficients of the STOs).

There is an analogous equation for $\phi_{2}$ :
$H_{2}^{\text {eff }} \varphi_{2}=\varepsilon_{2} \varphi_{2} \quad$ where $\quad H_{2}^{\text {eff }}=-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{2}}+V_{2}^{\text {eff }} \quad V_{2}^{\text {eff }}=\left\langle\varphi_{1}^{\text {init }}(1)\right| \frac{1}{r_{12}}\left|\varphi_{1}^{\text {init }}(1)\right\rangle$
This equation can be solved exactly to get a new estimate for the function, $\phi_{2}{ }^{\text {new }}$ (e.g. a new set of coefficients of the STOs).

## A Problem of Consistency

We used initial guesses for the atomic orbitals, $\varphi_{1}^{\text {init }}\left(\vec{r}_{2}\right)$ and $\varphi_{2}^{\text {init }}\left(\vec{r}_{2}\right)$, to compute $\mathrm{V}_{1}$ eff and $\mathrm{V}_{2}$ eff in the Hartree Equations:
$H_{1}^{\text {eff }} \varphi_{1}=\varepsilon_{1} \varphi_{1} \quad$ where $\quad H_{1}^{\text {eff }}=-\frac{1}{2} \nabla_{1}^{2}-\frac{2}{r_{1}}+V_{1}^{\text {eff }} \quad V_{1}^{\text {eff }}=\left\langle\varphi_{2}^{\text {init }}(2)\right| \frac{1}{r_{12}}\left|\varphi_{2}^{\text {init }}(2)\right\rangle \longleftarrow$
$H_{2}^{\text {eff }} \varphi_{2}=\varepsilon_{2} \varphi_{2} \quad$ where $\quad H_{2}^{\text {eff }}=-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{2}}+V_{2}^{\text {eff }} \quad V_{2}^{\text {eff }}=\left\langle\varphi_{1}^{\text {init }}(1)\right| \frac{1}{r_{12}}\left|\varphi_{1}^{\text {init }}(1)\right\rangle \longleftarrow$
We then solved the equations to get new orbitals, $\varphi_{1}^{\text {new }}\left(\vec{r}_{2}\right)$ and $\varphi_{2}^{\text {new }}\left(\vec{r}_{2}\right)$
If these new orbitals had been used to calculate $V_{1}^{\text {eff }}$ and $V_{2}^{\text {eff }}$, we would have gotten different effective potentials.

Oy Vey!!! What a mess!!!
What can we do to fix the problem that the orbitals resulting from solving the effective Schrödinger equations are not the same as the orbitals that we used to construct the equations??

## The Solution: Iterate to Self-Consistency

Repeat the procedure. This time, use $\varphi_{1}^{n e w}\left(\vec{r}_{1}\right)$ and $\varphi_{2}^{n e \omega}\left(\vec{r}_{2}\right)$
to construct $V_{1}^{\text {eff }}$ and $V_{2}^{\text {eff }}$ and solve the equations again.
Now, you'll get an even newer pair of orbitals, $\varphi_{1}^{\text {never }}\left(\vec{r}_{1}\right)$ and $\varphi_{2}^{\text {neerer }}\left(\vec{r}_{2}\right)$
BUT: You have the same problem again. The effective Hamiltonians that were used to compute this newest pair of orbitals were constructed from the older set of orbitals.

Well, I suppose you could repeat the procedure again, and again, and again, and again, until you either: (1) go insane
(2) quit Chemistry and establish a multibillion dollar international trucking conglomerate (please remember me in your will).

Fortunately, the problem is not so dire. Usually, you will find that the new orbitals predicted by solving the equations get closer and closer to the orbitals used to construct the effective Hamiltonians.

When they are sufficiently close, you stop, declare victory, and go out and celebrate with a dozen Krispy Kreme donuts (or pastrami sandwiches on rye, if that's your preference).

When the output orbitals are consistent with the input orbitals, you have achieved a "Self-Consistent Field" (SCF).

Often, you will reach the SCF criterion within 10-20 iterations, although it may take 50-60 iterations or more in difficult cases.

While the procedure appears very tedious and time consuming, it's actually quite fast on modern computers. A single SCF calculation on a moderate sized molecule (with 50-100 electrons) can take well under 1 second.

## The Energy

## A. The total energy

$$
\begin{aligned}
H & =-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}=\left[-\frac{1}{2} \nabla_{1}^{2}\left(\vec{r}_{1}\right)-\frac{2}{r_{1}}\right]+\left[-\frac{1}{2} \nabla_{2}^{2}\left(\vec{r}_{2}\right)-\frac{2}{r_{2}}\right]+\frac{1}{r_{12}} \\
H & =H_{1}^{H e^{+}}(1)+H_{2}^{H e^{+}}(2)+\frac{1}{r_{12}} \text { where } H_{1}^{H e^{+}}=-\frac{1}{2} \nabla_{1}^{2}-\frac{2}{r_{1}} \text { and } H_{2}^{H e^{+}}=-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{2}}
\end{aligned}
$$

$\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ are just each the Hamiltonian for the electron in a $\mathrm{He}^{+}$ion.

$$
\begin{gathered}
E=\int \psi^{*} H \psi d \tau=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| H\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle \\
E=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| H_{1}^{H e^{+}}(1)+H_{2}^{H e^{+}}(2)+\frac{1}{r_{12}}\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle
\end{gathered}
$$

We're assuming that $\phi_{1}$ and $\phi_{2}$ have both been normalized.

$$
E=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| H_{1}^{H e^{+}}(1)+H_{2}^{H e^{+}}(2)+\frac{1}{r_{12}}\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle
$$

## $E=I_{1}+I_{2}+J_{12} \quad$ Remember, this is the total energy of the two electrons.

$$
\left.I_{1}=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| H_{1}^{H e^{+}}(1) \mid \varphi_{1}(1) \varphi_{2}(2) \neq\left\langle\varphi_{2}(2) \mid \varphi_{2}(2)\right\rangle\left\langle\varphi_{1}(1)\right| H_{1}^{H e^{+}}(1) \mid \varphi_{1}(1)\right)=\left\langle\varphi_{1}(1)\right| H_{1}^{H e^{+}}\left|\varphi_{1}(1)\right\rangle
$$

$I_{1}$ is the energy of an electron in a $\mathrm{He}^{+}$ion.

$$
I_{2}=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| H_{2}^{H e^{+}}(2)\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle\left\langle\varphi_{1}(1) \mid \varphi_{1}(1)\right\rangle\left\langle\varphi_{2}(2)\right| H_{2}^{H e^{+}}(2) \mid \varphi_{2}(2) \neq\left\langle\varphi_{2}(2)\right| H_{2}^{H e^{+}}\left|\varphi_{1}(2)\right\rangle
$$

$I_{2}$ is the energy of an electron in a $\mathrm{He}^{+}$ion.

$$
J_{12}=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| \frac{1}{r_{12}}\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle=\int_{\vec{T}_{1}} \int_{\vec{r}_{2}} \frac{\left[\varphi_{1}^{*}\left(\vec{r}_{1}\right) \varphi_{1}\left(\vec{r}_{1}\right)\right]\left[\varphi_{2}^{*}\left(\vec{r}_{2}\right) \varphi_{2}\left(\vec{r}_{2}\right)\right]}{r_{12}} d \vec{r}_{1} d \vec{r}_{2}
$$

$J_{12}$ is the Coulomb Integral and represents the coulombic repulsion energy of the two electrons

## The Energy

## B. The Individual Orbital Energies, $\varepsilon_{1}$ and $\varepsilon_{2}$

$$
\varepsilon_{1}=I_{1}+J_{12}
$$

where $J_{12}=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| \frac{1}{r_{12}}\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle=\iint \frac{\left[\varphi_{1}^{*} \varphi_{1}\right]\left[\varphi_{2}^{*} \varphi_{2}\right]}{r_{12}} d \vec{r}_{1} d \vec{r}_{2}$

$$
\varepsilon_{2}=I_{2}+J_{12}
$$

where $J_{12}=\left\langle\varphi_{1}(1) \varphi_{2}(2)\right| \frac{1}{r_{12}}\left|\varphi_{1}(1) \varphi_{2}(2)\right\rangle=\iint \frac{\left[\varphi_{1}^{*} \varphi_{1}\right]\left[\varphi_{2}^{*} \varphi_{2}\right]}{r_{12}} d \vec{r}_{1} d \vec{r}_{2}$

The sum of orbital energies: $\varepsilon_{1}+\varepsilon_{2}=\left(I_{1}+J_{12}\right)+\left(I_{2}+J_{12}\right)=I_{1}+I_{2}+2 J_{12}$

## C. Total Energy versus sum of orbital energies

The sum of orbital energies: $\varepsilon_{1}+\varepsilon_{2}=I_{1}+I_{2}+2 J_{12}$ The total energy: $E=I_{1}+I_{2}+J_{12}$

The sum of the orbital energies has one too many Coulomb integrals, $J_{12}$.

The reason is that each orbital energy has the full electron-electron repulsion - You're counting it one time too many!!!

$$
\begin{aligned}
& \varepsilon_{1}+\varepsilon_{2}=I_{1}+I_{2}+2 J_{12} \\
& E=I_{1}+I_{2}+J_{12}
\end{aligned}
$$

Therefore: $\quad E=\left(I_{1}+J_{12}\right)+\left(I_{2}+J_{12}\right)-J_{12}$

$$
E=\varepsilon_{1}+\varepsilon_{2}-J_{12}
$$

We conclude that one must subtract the Coulomb repulsive energy, $J_{12}$, from the sum of orbital energies, $\varepsilon_{1}+\varepsilon_{2}$, to correct for the double counting of the repulsion between the two electrons.

